Derivation of Dirac Spinors as the Minimal Left Ideal of a Clifford Algebra


The energy mass shell equation is

(E0c)2=(Ec)2p2\bigg(\dfrac{E_0}{c}\bigg)^2 = \bigg(\dfrac{E}{c}\bigg)^2 - ||\vec{p}||^2

Where E0=mc2E_0 = mc^2 is the rest energy, EE is the total energy and p\vec{p} is the momentum vector.

Replacing energy and momentum with their respective wave equation operators E=itE = i\hbar\dfrac{\partial}{\partial t} and p=ix,y,zp = -i\hbar\bigg\langle\dfrac{\partial}{\partial x}, \dfrac{\partial}{\partial y}, \dfrac{\partial}{\partial z}\bigg\rangle gives the Klein-Gordon equation.

(E0c)2=2(1c222t2+2x2+2y2+2z2)\bigg(\dfrac{E_0}{c}\bigg)^2 = \hbar^2\bigg(-\dfrac{1}{c^2}^2 \dfrac{\partial^2}{\partial t^2} + \dfrac{\partial^2}{\partial x^2} + \dfrac{\partial^2}{\partial y^2} + \dfrac{\partial^2}{\partial z^2}\bigg)
12(E0c)2=(1c222t22x22y22z2)-\dfrac{1}{\hbar^2}\bigg(\dfrac{E_0}{c}\bigg)^2 = \bigg(\dfrac{1}{c^2}^2 \dfrac{\partial^2}{\partial t^2} - \dfrac{\partial^2}{\partial x^2} - \dfrac{\partial^2}{\partial y^2} - \dfrac{\partial^2}{\partial z^2}\bigg)

Assume there exists some expression that squares to the operators on the right.

(γt1ct+γxx+γyy+γzz)2=1c222t22x22y22z2\bigg(\gamma_t \dfrac{1}{c} \dfrac{\partial}{\partial t} + \gamma_x \dfrac{\partial}{\partial x} + \gamma_y \dfrac{\partial}{\partial y} + \gamma_z \dfrac{\partial}{\partial z} \bigg)^2 = \dfrac{1}{c^2}^2 \dfrac{\partial^2}{\partial t^2} - \dfrac{\partial^2}{\partial x^2} - \dfrac{\partial^2}{\partial y^2} - \dfrac{\partial^2}{\partial z^2}

Multiplying the left side out gives the below

γt21c22t2+γtγx1c2tx+γtγy1c2ty+γtγz1c2tz\gamma_t^2 \dfrac{1}{c^2} \dfrac{\partial^2}{\partial t^2}+ \gamma_t \gamma_x \dfrac{1}{c} \dfrac{\partial^2}{\partial t \partial x}+ \gamma_t \gamma_y \dfrac{1}{c} \dfrac{\partial^2}{\partial t \partial y}+ \gamma_t \gamma_z \dfrac{1}{c} \dfrac{\partial^2}{\partial t \partial z}
+γxγt1c2xt+γx22x2+γxγy2xy+γxγz2xz+ \gamma_x \gamma_t \dfrac{1}{c} \dfrac{\partial^2}{\partial x \partial t}+ \gamma_x^2 \dfrac{\partial^2}{\partial x^2}+ \gamma_x \gamma_y \dfrac{\partial^2}{\partial x \partial y}+ \gamma_x \gamma_z \dfrac{\partial^2}{\partial x \partial z}
+γyγt1c2yt+γyγx2yx+γy22y2+γyγz2yz+ \gamma_y \gamma_t \dfrac{1}{c} \dfrac{\partial^2}{\partial y \partial t}+ \gamma_y \gamma_x \dfrac{\partial^2}{\partial y \partial x}+ \gamma_y^2 \dfrac{\partial^2}{\partial y^2}+ \gamma_y \gamma_z \dfrac{\partial^2}{\partial y \partial z}
+γzγt1c2zt+γzγx2zx+γzγy2zy+γz22z2+ \gamma_z \gamma_t \dfrac{1}{c} \dfrac{\partial^2}{\partial z \partial t}+ \gamma_z \gamma_x \dfrac{\partial^2}{\partial z \partial x}+ \gamma_z \gamma_y \dfrac{\partial^2}{\partial z \partial y}+ \gamma_z^2 \dfrac{\partial^2}{\partial z^2}
=1c222t22x22y22z2= \dfrac{1}{c^2}^2 \dfrac{\partial^2}{\partial t^2} - \dfrac{\partial^2}{\partial x^2} - \dfrac{\partial^2}{\partial y^2} - \dfrac{\partial^2}{\partial z^2}

Assuming the derivative operators are commutative then then grouping

γt21c2t2+γx2x2+γy2y2+γz2z2\gamma_t^2 \dfrac{1}{c^2} \dfrac{\partial}{\partial t^2}+ \gamma_x^2 \dfrac{\partial}{\partial x^2}+ \gamma_y^2 \dfrac{\partial}{\partial y^2}+ \gamma_z^2 \dfrac{\partial}{\partial z^2}
+(γtγx+γxγt)1ctx+ (\gamma_t \gamma_x + \gamma_x \gamma_t) \dfrac{1}{c} \dfrac{\partial}{\partial t \partial x}
+(γtγy+γyγt)1cty+ (\gamma_t \gamma_y + \gamma_y \gamma_t) \dfrac{1}{c} \dfrac{\partial}{\partial t \partial y}
+(γtγx+γzγt)1ctz+ (\gamma_t \gamma_x + \gamma_z \gamma_t) \dfrac{1}{c} \dfrac{\partial}{\partial t \partial z}
+(γxγy+γyγx)xy+ (\gamma_x \gamma_y + \gamma_y \gamma_x) \dfrac{\partial}{\partial x \partial y}
+(γxγz+γzγx)xz+ (\gamma_x \gamma_z + \gamma_z \gamma_x) \dfrac{\partial}{\partial x \partial z}
+(γyγz+γzγy)yz+ (\gamma_y \gamma_z + \gamma_z \gamma_y) \dfrac{\partial}{\partial y \partial z}
=1c222t22x22y22z2= \dfrac{1}{c^2}^2 \dfrac{\partial^2}{\partial t^2} - \dfrac{\partial^2}{\partial x^2} - \dfrac{\partial^2}{\partial y^2} - \dfrac{\partial^2}{\partial z^2}

Assuming the derivatives are independent the only solution can be that

γt2=1\gamma_t^2 = 1
γx2=1\gamma_x^2 = -1
γy2=1\gamma_y^2 = -1
γz2=1\gamma_z^2 = -1
γtγx+γxγt=0\gamma_t \gamma_x + \gamma_x \gamma_t = 0
γtγy+γyγt=0\gamma_t \gamma_y + \gamma_y \gamma_t = 0
γtγx+γzγt=0\gamma_t \gamma_x + \gamma_z \gamma_t = 0
γxγy+γyγx=0\gamma_x \gamma_y + \gamma_y \gamma_x = 0
γxγz+γzγx=0\gamma_x \gamma_z + \gamma_z \gamma_x = 0
γyγz+γzγy=0\gamma_y \gamma_z + \gamma_z \gamma_y = 0

These just so happen to be basis elements of a Clifford algebra Cl(V,Q)\text{Cl}(V, Q) over a vector space with basis elements

tγt+xγx+yγy+zγzV=R4t\gamma_t + x\gamma_x + y\gamma_y + z\gamma_z \in V = \mathbb{R}^4

and quadratic form

Q(tγt+xγx+yγy+zγz)=t2x2y2z2Q(t\gamma_t + x\gamma_x + y\gamma_y + z\gamma_z) = t^2 - x^2 - y^2 - z^2

By "square rooting" both sides of the Klein-Gordon equation the resulting equation, the Dirac equation, can then be written as

±iE0c=γt1ct+γxx+γyy+γzz\pm\dfrac{i}{\hbar}\dfrac{E_0}{c} = \gamma_t \dfrac{1}{c} \dfrac{\partial}{\partial t} + \gamma_x \dfrac{\partial}{\partial x} + \gamma_y \dfrac{\partial}{\partial y} + \gamma_z \dfrac{\partial}{\partial z}

(The choice of plus minus will just switch matter and antimatter.) After applying the operator to the wave field ψ(t,x,y,z)\psi(t, x, y, z) we get

±iE0cψ(t,x,y,z)=γt1cψ(t,x,y,z)t+γxψ(t,x,y,z)x+γyψ(t,x,y,z)y+γzψ(t,x,y,z)z\pm\dfrac{i}{\hbar}\dfrac{E_0}{c}\psi(t, x, y, z) = \gamma_t \dfrac{1}{c} \dfrac{\partial\psi(t, x, y, z)}{\partial t} + \gamma_x \dfrac{\partial\psi(t, x, y, z)}{\partial x} + \gamma_y \dfrac{\partial\psi(t, x, y, z)}{\partial y} + \gamma_z \dfrac{\partial\psi(t, x, y, z)}{\partial z}

Whatever the elements of the field ψ(t,x,y,z)\psi(t, x, y, z) are multiplied on the left by the basis elements of the Clifford algebra they stay in the same group. This behaviour is a left ideal over the Clifford algebra as a ring. A left ideal is a subset SCl(V,Q)S \subset Cl(V, Q) where (aCl(V,Q)).(bS).abS\forall (a \in Cl(V, Q)) . \forall (b \in S) . ab \in S it says in the subset when left multiplied by anything.

We can construct a minimal left ideal from any primitive idempotent p=p2p = p^2. The choice of idempotent doesn't matter as all minimal left ideals are isomorphic. We will arbitrarily choose

p=12(1+γt)p = \frac{1}{2}(1 + \gamma_t)
and
p2=14(1+2γt+γt2)=14(2+2γt)=12(1+γt)=pp^2 = \frac{1}{4}(1 + 2\gamma_t + \gamma_t^2) = \frac{1}{4}(2 + 2\gamma_t) = \frac{1}{2}(1 + \gamma_t) = p

Then to generate the minimal left ideal we project all elements aCL(V,Q)a \in \text{CL}(V, Q) to apap

Any element xx can be written in its 16 dimensional basis:

a=a =
XX
+Xtγt+ X_t\gamma_t
+Xxγx+ X_x\gamma_x
+Xyγy+ X_y\gamma_y
+Xzγz+ X_z\gamma_z
+Xtxγtγx+ X_{tx}\gamma_t\gamma_x
+Xtyγtγy+ X_{ty}\gamma_t\gamma_y
+Xtzγtγz+ X_{tz}\gamma_t\gamma_z
+Xxyγxγy+ X_{xy}\gamma_x\gamma_y
+Xxzγxγz+ X_{xz}\gamma_x\gamma_z
+Xyzγyγz+ X_{yz}\gamma_y\gamma_z
+Xtxyγtγxγy+ X_{txy}\gamma_t\gamma_x\gamma_y
+Xtxzγtγxγz+ X_{txz}\gamma_t\gamma_x\gamma_z
+Xtyzγtγyγz+ X_{tyz}\gamma_t\gamma_y\gamma_z
+Xtyzγxγyγz+ X_{tyz}\gamma_x\gamma_y\gamma_z
+Xtxyzγtγxγyγz+ X_{txyz}\gamma_t\gamma_x\gamma_y\gamma_z

After multiplying by pp

ap=a12(1+γt)=12(ap = a\frac{1}{2}(1 + \gamma_t) = \frac{1}{2}\bigg(
X(1+γt)X(1 + \gamma_t)
+Xt(γt+1)+ X_t(\gamma_t+1)
+Xx(γxγtγx)+ X_x(\gamma_x - \gamma_t\gamma_x)
+Xy(γyγtγy)+ X_y(\gamma_y - \gamma_t\gamma_y)
+Xz(γzγtγz)+ X_z(\gamma_z - \gamma_t\gamma_z)
+Xtx(γtγxγx)+ X_{tx}(\gamma_t\gamma_x - \gamma_x)
+Xty(γtγyγy)+ X_{ty}(\gamma_t\gamma_y - \gamma_y)
+Xtz(γtγzγz)+ X_{tz}(\gamma_t\gamma_z - \gamma_z)
+Xxy(γxγy+γtγxγy)+ X_{xy}(\gamma_x\gamma_y + \gamma_t\gamma_x\gamma_y)
+Xxz(γxγz+γtγxγz)+ X_{xz}(\gamma_x\gamma_z + \gamma_t\gamma_x\gamma_z)
+Xyz(γyγz+γtγyγz)+ X_{yz}(\gamma_y\gamma_z + \gamma_t\gamma_y\gamma_z)
+Xtxy(γtγxγy+γxγy)+ X_{txy}(\gamma_t\gamma_x\gamma_y + \gamma_x\gamma_y)
+Xtxz(γtγxγy+γxγz)+ X_{txz}(\gamma_t\gamma_x\gamma_y + \gamma_x\gamma_z)
+Xtyz(γtγyγz+γyγz)+ X_{tyz}(\gamma_t\gamma_y\gamma_z + \gamma_y\gamma_z)
+Xxyz(γxγyγzγtγxγyγz)+ X_{xyz}(\gamma_x\gamma_y\gamma_z - \gamma_t\gamma_x\gamma_y\gamma_z)
+Xtxyz(γtγxγyγzγxγyγz))+ X_{txyz}(\gamma_t\gamma_x\gamma_y\gamma_z - \gamma_x\gamma_y\gamma_z) \bigg)

Then grouping them makes an 8 dimensional basis:

ap=12(ap = \frac{1}{2}\bigg(
(X+Xt)(1+γt)(X + X_t)(1 + \gamma_t)
+(XxXtx)(γxγtγx)+ (X_x - X_{tx})(\gamma_x - \gamma_t\gamma_x)
+(XyXty)(γyγtγy)+ (X_y - X_{ty})(\gamma_y - \gamma_t\gamma_y)
+(XzXtz)(γzγtγz)+ (X_z - X_{tz})(\gamma_z - \gamma_t\gamma_z)
+(Xxy+Xtxy)(γxγy+γtγxγy)+ (X_{xy} + X_{txy})(\gamma_x\gamma_y + \gamma_t\gamma_x\gamma_y)
+(Xxz+Xtxz)(γxγz+γtγxγz)+ (X_{xz} + X_{txz})(\gamma_x\gamma_z + \gamma_t\gamma_x\gamma_z)
+(Xyz+Xtyz)(γyγz+γtγyγz)+ (X_{yz} + X_{tyz})(\gamma_y\gamma_z + \gamma_t\gamma_y\gamma_z)
+(XxyzXtxyz)(γxγyγzγtγxγyγz))+ (X_{xyz} - X_{txyz})(\gamma_x\gamma_y\gamma_z - \gamma_t\gamma_x\gamma_y\gamma_z) \bigg)

Then if we represent this as a vector A,B,C,D,E,F,G,H\langle A, B, C, D, E, F, G, H \rangle. These elements of a minimal left ideal are the elements of the field ψ(t,x,y,z)\psi(t, x, y, z).

ψ(t,x,y,z)=12(\psi(t, x, y, z) = \frac{1}{2}\bigg(
A(1+γt)A(1 + \gamma_t)
+B(γxγtγx)+ B(\gamma_x - \gamma_t\gamma_x)
+C(γyγtγy)+ C(\gamma_y - \gamma_t\gamma_y)
+D(γzγtγz)+ D(\gamma_z - \gamma_t\gamma_z)
+E(γxγy+γtγxγy)+ E(\gamma_x\gamma_y + \gamma_t\gamma_x\gamma_y)
+F(γxγz+γtγxγz)+ F(\gamma_x\gamma_z + \gamma_t\gamma_x\gamma_z)
+G(γyγz+γtγyγz)+ G(\gamma_y\gamma_z + \gamma_t\gamma_y\gamma_z)
+H(γxγyγzγtγxγyγz))+ H(\gamma_x\gamma_y\gamma_z - \gamma_t\gamma_x\gamma_y\gamma_z) \bigg)

Then substituting into the Dirac equation

±iE0cψ(t,x,y,z)=γt1cψ(t,x,y,z)t+γxψ(t,x,y,z)x+γyψ(t,x,y,z)y+γzψ(t,x,y,z)z\pm\dfrac{i}{\hbar}\dfrac{E_0}{c}\psi(t, x, y, z) = \gamma_t \dfrac{1}{c} \dfrac{\partial\psi(t, x, y, z)}{\partial t} + \gamma_x \dfrac{\partial\psi(t, x, y, z)}{\partial x} + \gamma_y \dfrac{\partial\psi(t, x, y, z)}{\partial y} + \gamma_z \dfrac{\partial\psi(t, x, y, z)}{\partial z}

with the subsituted in vectors

±iE0c[ABCDEFGH]=γt1ct[ABCDEFGH]+γxx[ABCDEFGH]+γyy[ABCDEFGH]+γzz[ABCDEFGH]\pm\dfrac{i}{\hbar}\dfrac{E_0}{c}\begin{bmatrix}A \\B \\C \\D \\E \\F \\G \\H\end{bmatrix}=\gamma_t \dfrac{1}{c} \dfrac{\partial}{\partial t}\begin{bmatrix}A \\B \\C \\D \\E \\F \\G \\H\end{bmatrix}+ \gamma_x \dfrac{\partial}{\partial x}\begin{bmatrix}A \\B \\C \\D \\E \\F \\G \\H\end{bmatrix}+ \gamma_y \dfrac{\partial}{\partial y}\begin{bmatrix}A \\B \\C \\D \\E \\F \\G \\H\end{bmatrix}+ \gamma_z \dfrac{\partial}{\partial z}\begin{bmatrix}A \\B \\C \\D \\E \\F \\G \\H\end{bmatrix}

We can find how the basis elements γt,γx,γy,γz\gamma_t, \gamma_x, \gamma_y, \gamma_z act on elements of the minimal left ideal, or ψ\psi, when left multiplied..

γt(A(1+γt)\gamma_t(A(1 + \gamma_t)
B(γxγtγx)+C(γyγtγy)+D(γzγtγz)B(\gamma_x - \gamma_t\gamma_x) + C(\gamma_y - \gamma_t\gamma_y) + D(\gamma_z - \gamma_t\gamma_z)
E(γxγy+γtγxγy)+F(γxγz+γtγxγz)+G(γyγz+γtγyγz)E(\gamma_x\gamma_y + \gamma_t\gamma_x\gamma_y) + F(\gamma_x\gamma_z + \gamma_t\gamma_x\gamma_z) + G(\gamma_y\gamma_z + \gamma_t\gamma_y\gamma_z)
H(γxγyγzγtγxγyγz))H(\gamma_x\gamma_y\gamma_z - \gamma_t\gamma_x\gamma_y\gamma_z))
==
A(γt+1)A(\gamma_t + 1)
B(γtγxγx)+C(γtγyγy)+D(γtγzγz)B(\gamma_t\gamma_x - \gamma_x) + C(\gamma_t\gamma_y - \gamma_y) + D(\gamma_t\gamma_z - \gamma_z)
E(γtγxγy+γxγy)+F(γtγxγz+γxγz)+G(γtγyγz+γyγz)E(\gamma_t\gamma_x\gamma_y + \gamma_x\gamma_y) + F(\gamma_t\gamma_x\gamma_z + \gamma_x\gamma_z) + G(\gamma_t\gamma_y\gamma_z + \gamma_y\gamma_z)
H(γtγxγyγzγxγyγz)H(\gamma_t\gamma_x\gamma_y\gamma_z - \gamma_x\gamma_y\gamma_z)
=[ABCDEFGH]= \begin{bmatrix}A \\-B \\-C \\-D \\E \\F \\G \\-H\end{bmatrix}

So the matrix representation is

γt[1000000001000000001000000001000000001000000001000000001000000001]\gamma_t \mapsto\begin{bmatrix}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{bmatrix}

Doing it for γx\gamma_x.

γx(A(1+γt)\gamma_x(A(1 + \gamma_t)
B(γxγtγx)+C(γyγtγy)+D(γzγtγz)B(\gamma_x - \gamma_t\gamma_x) + C(\gamma_y - \gamma_t\gamma_y) + D(\gamma_z - \gamma_t\gamma_z)
E(γxγy+γtγxγy)+F(γxγz+γtγxγz)+G(γyγz+γtγyγz)E(\gamma_x\gamma_y + \gamma_t\gamma_x\gamma_y) + F(\gamma_x\gamma_z + \gamma_t\gamma_x\gamma_z) + G(\gamma_y\gamma_z + \gamma_t\gamma_y\gamma_z)
H(γxγyγzγtγxγyγz))H(\gamma_x\gamma_y\gamma_z - \gamma_t\gamma_x\gamma_y\gamma_z))
==
A(γxγtγx)A(\gamma_x - \gamma_t\gamma_x)
B(1γt)+C(γxγy+γtγxγy)+D(γxγz+γtγxγz)B(-1 - \gamma_t) + C(\gamma_x\gamma_y + \gamma_t\gamma_x\gamma_y) + D(\gamma_x\gamma_z + \gamma_t\gamma_x\gamma_z)
E(γy+γtγy)+F(γz+γtγz)+G(γxγyγzγtγxγyγz)E(-\gamma_y + \gamma_t\gamma_y) + F(-\gamma_z + \gamma_t\gamma_z) + G(\gamma_x\gamma_y\gamma_z - \gamma_t\gamma_x\gamma_y\gamma_z)
H(γyγzγtγyγz)H(-\gamma_y\gamma_z - \gamma_t\gamma_y\gamma_z)
=[BAEFCDHG]= \begin{bmatrix}-B \\A \\-E\\-F\\C\\D\\-H\\G\end{bmatrix}

So the matrix representation is

γx[0100000010000000000010000000010000100000000100000000000100000010]\gamma_x \mapsto\begin{bmatrix}0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{bmatrix}

Doing it for γy\gamma_y.

γy(A(1+γt)\gamma_y(A(1 + \gamma_t)
B(γxγtγx)+C(γyγtγy)+D(γzγtγz)B(\gamma_x - \gamma_t\gamma_x) + C(\gamma_y - \gamma_t\gamma_y) + D(\gamma_z - \gamma_t\gamma_z)
E(γxγy+γtγxγy)+F(γxγz+γtγxγz)+G(γyγz+γtγyγz)E(\gamma_x\gamma_y + \gamma_t\gamma_x\gamma_y) + F(\gamma_x\gamma_z + \gamma_t\gamma_x\gamma_z) + G(\gamma_y\gamma_z + \gamma_t\gamma_y\gamma_z)
H(γxγyγzγtγxγyγz))H(\gamma_x\gamma_y\gamma_z - \gamma_t\gamma_x\gamma_y\gamma_z))
==
A(γyγtγy)A(\gamma_y - \gamma_t\gamma_y)
B(γxγyγtγxγy)+C(1γt)+D(γyγz+γtγyγz)B(-\gamma_x\gamma_y - \gamma_t\gamma_x\gamma_y) + C(-1 - \gamma_t) + D(\gamma_y\gamma_z + \gamma_t\gamma_y\gamma_z)
E(γxγtγx)+F(γxγyγz+γtγxγyγz)+G(γz+γtγz)E(\gamma_x - \gamma_t\gamma_x) + F(-\gamma_x\gamma_y\gamma_z + \gamma_t\gamma_x\gamma_y\gamma_z) + G(-\gamma_z + \gamma_t\gamma_z)
H(γxγz+γtγxγz)H(\gamma_x\gamma_z + \gamma_t\gamma_x\gamma_z)
=[CEAGBHDF]= \begin{bmatrix}-C\\E\\A\\-G\\-B\\H\\D\\-F\end{bmatrix}

So the matrix representation is

γy[0010000000001000100000000000001001000000000000010001000000000100]\gamma_y \mapsto\begin{bmatrix}0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & -1 & 0 & 0\end{bmatrix}

Doing it for γz\gamma_z.

γz(A(1+γt)\gamma_z(A(1 + \gamma_t)
B(γxγtγx)+C(γyγtγy)+D(γzγtγz)B(\gamma_x - \gamma_t\gamma_x) + C(\gamma_y - \gamma_t\gamma_y) + D(\gamma_z - \gamma_t\gamma_z)
E(γxγy+γtγxγy)+F(γxγz+γtγxγz)+G(γyγz+γtγyγz)E(\gamma_x\gamma_y + \gamma_t\gamma_x\gamma_y) + F(\gamma_x\gamma_z + \gamma_t\gamma_x\gamma_z) + G(\gamma_y\gamma_z + \gamma_t\gamma_y\gamma_z)
H(γxγyγzγtγxγyγz))H(\gamma_x\gamma_y\gamma_z - \gamma_t\gamma_x\gamma_y\gamma_z))
==
A(γzγtγz)A(\gamma_z - \gamma_t\gamma_z)
B(γxγzγtγxγz)+C(γyγzγtγyγz)+D(1γt)B(-\gamma_x\gamma_z - \gamma_t\gamma_x\gamma_z) + C(-\gamma_y\gamma_z - \gamma_t\gamma_y\gamma_z) + D(-1 - \gamma_t)
E(γxγyγzγtγxγyγz)+F(γxγtγx)+G(γyγtγy)E(\gamma_x\gamma_y\gamma_z - \gamma_t\gamma_x\gamma_y\gamma_z) + F(\gamma_x - \gamma_t\gamma_x) + G(\gamma_y - \gamma_t\gamma_y)
H(γxγyγtγxγy)H(-\gamma_x\gamma_y - \gamma_t\gamma_x\gamma_y)
=[DFGAHBCE]= \begin{bmatrix}-D\\F\\G\\A\\-H\\-B\\-C\\E\end{bmatrix}

So the matrix representation is

γz[0001000000000100000000101000000000000001010000000010000000001000]\gamma_z \mapsto\begin{bmatrix}0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{bmatrix}

If we then change the vector representation in R8\mathbb{R}^8 to C4\mathbb{C}^4

ψ(t,x,y,z)[ABCDEFGH][A+iGF+iEB+iHD+iC]\psi(t, x, y, z) \mapsto \begin{bmatrix}A \\B \\C \\D \\E \\F \\G \\H\end{bmatrix}\mapsto\begin{bmatrix}A + iG \\F + iE \\B + iH \\D + iC\end{bmatrix}

the corresponding matricies map to

γt[1000010000100001],γx[0010000110000100],γy[000i00i00i00i000],γz[0001001001001000]\gamma_t \mapsto\begin{bmatrix}1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 \\0 & 0 & -1 & 0 \\0 & 0 & 0 & -1\end{bmatrix},\gamma_x \mapsto\begin{bmatrix}0 & 0 & -1 & 0 \\0 & 0 & 0 & 1 \\1 & 0 & 0 & 0 \\0 & -1 & 0 & 0\end{bmatrix},\gamma_y \mapsto\begin{bmatrix}0 & 0 & 0 & i \\0 & 0 & -i & 0 \\0 & -i & 0 & 0 \\i & 0 & 0 & 0\end{bmatrix},\gamma_z \mapsto\begin{bmatrix}0 & 0 & 0 & -1 \\0 & 0 & -1 & 0 \\0 & 1 & 0 & 0 \\1 & 0 & 0 & 0\end{bmatrix}

and these just so happen to be the Dirac matricies, showing their derivation.