Derivation of Dirac Spinors as the Minimal Left Ideal of a Clifford Algebra


The energy mass shell equation is

(E0c)2=(Ec)2||p||2

Where E0=mc2 is the rest energy, E is the total energy and p is the momentum vector.

Replacing energy and momentum with their respective wave equation operators E=it and p=ix,y,z gives the Klein-Gordon equation.

(E0c)2=2(1c222t2+2x2+2y2+2z2)
12(E0c)2=(1c222t22x22y22z2)

Assume there exists some expression that squares to the operators on the right.

(γt1ct+γxx+γyy+γzz)2=1c222t22x22y22z2

Multiplying the left side out gives the below

γt21c22t2+γtγx1c2tx+γtγy1c2ty+γtγz1c2tz
+γxγt1c2xt+γx22x2+γxγy2xy+γxγz2xz
+γyγt1c2yt+γyγx2yx+γy22y2+γyγz2yz
+γzγt1c2zt+γzγx2zx+γzγy2zy+γz22z2
=1c222t22x22y22z2

Assuming the derivative operators are commutative then then grouping

γt21c2t2+γx2x2+γy2y2+γz2z2
+(γtγx+γxγt)1ctx
+(γtγy+γyγt)1cty
+(γtγx+γzγt)1ctz
+(γxγy+γyγx)xy
+(γxγz+γzγx)xz
+(γyγz+γzγy)yz
=1c222t22x22y22z2

Assuming the derivatives are independent the only solution can be that

γt2=1
γx2=1
γy2=1
γz2=1
γtγx+γxγt=0
γtγy+γyγt=0
γtγx+γzγt=0
γxγy+γyγx=0
γxγz+γzγx=0
γyγz+γzγy=0

These just so happen to be basis elements of a Clifford algebra Cl(V,Q) over a vector space with basis elements

tγt+xγx+yγy+zγzV=4

and quadratic form

Q(tγt+xγx+yγy+zγz)=t2x2y2z2

By "square rooting" both sides of the Klein-Gordon equation the resulting equation, the Dirac equation, can then be written as

±iE0c=γt1ct+γxx+γyy+γzz

(The choice of plus minus will just switch matter and antimatter.) After applying the operator to the wave field ψ(t,x,y,z) we get

±iE0cψ(t,x,y,z)=γt1cψ(t,x,y,z)t+γxψ(t,x,y,z)x+γyψ(t,x,y,z)y+γzψ(t,x,y,z)z

Whatever the elements of the field ψ(t,x,y,z) are multiplied on the left by the basis elements of the Clifford algebra they stay in the same group. This behaviour is a left ideal over the Clifford algebra as a ring. A left ideal is a subset SCl(V,Q) where (aCl(V,Q)).(bS).abS it says in the subset when left multiplied by anything.

We can construct a minimal left ideal from any primitive idempotent p=p2. The choice of idempotent doesn't matter as all minimal left ideals are isomorphic. We will arbitrarily choose

p=12(1+γt)
and
p2=14(1+2γt+γt2)=14(2+2γt)=12(1+γt)=p

Then to generate the minimal left ideal we project all elements aCL(V,Q) to ap

Any element x can be written in its 16 dimensional basis:

a=
X
+Xtγt
+Xxγx
+Xyγy
+Xzγz
+Xtxγtγx
+Xtyγtγy
+Xtzγtγz
+Xxyγxγy
+Xxzγxγz
+Xyzγyγz
+Xtxyγtγxγy
+Xtxzγtγxγz
+Xtyzγtγyγz
+Xtyzγxγyγz
+Xtxyzγtγxγyγz

After multiplying by p

ap=a12(1+γt)=12(
X(1+γt)
+Xt(γt+1)
+Xx(γxγtγx)
+Xy(γyγtγy)
+Xz(γzγtγz)
+Xtx(γtγxγx)
+Xty(γtγyγy)
+Xtz(γtγzγz)
+Xxy(γxγy+γtγxγy)
+Xxz(γxγz+γtγxγz)
+Xyz(γyγz+γtγyγz)
+Xtxy(γtγxγy+γxγy)
+Xtxz(γtγxγy+γxγz)
+Xtyz(γtγyγz+γyγz)
+Xxyz(γxγyγzγtγxγyγz)
+Xtxyz(γtγxγyγzγxγyγz))

Then grouping them makes an 8 dimensional basis:

ap=12(
(X+Xt)(1+γt)
+(XxXtx)(γxγtγx)
+(XyXty)(γyγtγy)
+(XzXtz)(γzγtγz)
+(Xxy+Xtxy)(γxγy+γtγxγy)
+(Xxz+Xtxz)(γxγz+γtγxγz)
+(Xyz+Xtyz)(γyγz+γtγyγz)
+(XxyzXtxyz)(γxγyγzγtγxγyγz))

Then if we represent this as a vector A,B,C,D,E,F,G,H. These elements of a minimal left ideal are the elements of the field ψ(t,x,y,z).

ψ(t,x,y,z)=12(
A(1+γt)
+B(γxγtγx)
+C(γyγtγy)
+D(γzγtγz)
+E(γxγy+γtγxγy)
+F(γxγz+γtγxγz)
+G(γyγz+γtγyγz)
+H(γxγyγzγtγxγyγz))

Then substituting into the Dirac equation

±iE0cψ(t,x,y,z)=γt1cψ(t,x,y,z)t+γxψ(t,x,y,z)x+γyψ(t,x,y,z)y+γzψ(t,x,y,z)z

with the subsituted in vectors

±iE0c[ABCDEFGH]=γt1ct[ABCDEFGH]+γxx[ABCDEFGH]+γyy[ABCDEFGH]+γzz[ABCDEFGH]

We can find how the basis elements γt,γx,γy,γz act on elements of the minimal left ideal, or ψ, when left multiplied..

γt(A(1+γt)
B(γxγtγx)+C(γyγtγy)+D(γzγtγz)
E(γxγy+γtγxγy)+F(γxγz+γtγxγz)+G(γyγz+γtγyγz)
H(γxγyγzγtγxγyγz))
=
A(γt+1)
B(γtγxγx)+C(γtγyγy)+D(γtγzγz)
E(γtγxγy+γxγy)+F(γtγxγz+γxγz)+G(γtγyγz+γyγz)
H(γtγxγyγzγxγyγz)
=[ABCDEFGH]

So the matrix representation is

γt[1000000001000000001000000001000000001000000001000000001000000001]

Doing it for γx.

γx(A(1+γt)
B(γxγtγx)+C(γyγtγy)+D(γzγtγz)
E(γxγy+γtγxγy)+F(γxγz+γtγxγz)+G(γyγz+γtγyγz)
H(γxγyγzγtγxγyγz))
=
A(γxγtγx)
B(1γt)+C(γxγy+γtγxγy)+D(γxγz+γtγxγz)
E(γy+γtγy)+F(γz+γtγz)+G(γxγyγzγtγxγyγz)
H(γyγzγtγyγz)
=[BAEFCDHG]

So the matrix representation is

γx[0100000010000000000010000000010000100000000100000000000100000010]

Doing it for γy.

γy(A(1+γt)
B(γxγtγx)+C(γyγtγy)+D(γzγtγz)
E(γxγy+γtγxγy)+F(γxγz+γtγxγz)+G(γyγz+γtγyγz)
H(γxγyγzγtγxγyγz))
=
A(γyγtγy)
B(γxγyγtγxγy)+C(1γt)+D(γyγz+γtγyγz)
E(γxγtγx)+F(γxγyγz+γtγxγyγz)+G(γz+γtγz)
H(γxγz+γtγxγz)
=[CEAGBHDF]

So the matrix representation is

γy[0010000000001000100000000000001001000000000000010001000000000100]

Doing it for γz.

γz(A(1+γt)
B(γxγtγx)+C(γyγtγy)+D(γzγtγz)
E(γxγy+γtγxγy)+F(γxγz+γtγxγz)+G(γyγz+γtγyγz)
H(γxγyγzγtγxγyγz))
=
A(γzγtγz)
B(γxγzγtγxγz)+C(γyγzγtγyγz)+D(1γt)
E(γxγyγzγtγxγyγz)+F(γxγtγx)+G(γyγtγy)
H(γxγyγtγxγy)
=[DFGAHBCE]

So the matrix representation is

γz[0001000000000100000000101000000000000001010000000010000000001000]

If we then change the vector representation in 8 to 4

ψ(t,x,y,z)[ABCDEFGH][A+iGF+iEB+iHD+iC]

the corresponding matricies map to

γt[1000010000100001],γx[0010000110000100],γy[000i00i00i00i000],γz[0001001001001000]

and these just so happen to be the Dirac matricies, showing their derivation.