Seperating Free Energy into Potential and Kinetic Terms

eF(Q,P)kBT=Vdqiδ(Qifi(q))dpiδ(FPijfiqjHpj)eH(p,q)kBT

Then if the Hamiltonian is in the quadratic form

H(q,p)=12pA(q)p+U(q)=12kl𝐆kl(q)pkpl+U(q)

and

H(q,p)pj=kSjk(q)pk

then

eF(Q,P)kBT=Vdqiδ(Qifi(q))dpiδ(FPijfiqjkSjk(q)pk)e12klGkl(q)pkpl+U(q)kBT
=VdqeβU(q)iδ(Qifi(q))dpiδ(FPijfiqjkSjk(q)pk)eβ(12klSkl(q)pkpl)

And assume that the free energy is also quadratic or something

eβ(PR(Q)P+V(Q))=VdqeβU(q)iδ(Qifi(q))dpiδ(lRilPljfiqjkSjk(q)pk)eβ(12klSkl(q)pkpl)

substitute in the fourier definition for the dirac delta

=VdqeβU(q)iδ(Qifi(q))dpi1τdkeik(lRilPljfiqjkSjk(q)pk)eβ(12klSkl(q)pkpl)
=1τNVdqeβU(q)iδ(Qifi(q))dpdk1dkNieiki(lRilPljfiqjkSjk(q)pk)eβ(12klSkl(q)pkpl)
=1τNVdqeβU(q)iδ(Qifi(q))dpdk1dkNeiiki(lRilPljfiqjkSjk(q)pk)eβ(12klSkl(q)pkpl)

combine the exponents

=1τNVdqeβU(q)iδ(Qifi(q))dpdk1dkNeβ(12klSkl(q)pkpl)+iiki(lRilPljfiqjkSjk(q)pk)
=1τNVdqeβU(q)iδ(Qifi(q))dpdk1dkNeβ12p𝐒p+ik(𝐑P𝐀𝐒p)

swap the order of integration

=1τNVdqeβU(q)iδ(Qifi(q))dk1dkNdpeβ12p𝐒p+ik(𝐑P𝐀𝐒p)
=1τNVdqeβU(q)iδ(Qifi(q))dk1dkNeik𝐑Pdpeβ12p𝐒pik𝐀𝐒p

Do complete the squares on the exponent

β12p𝐒pik𝐀𝐒p
=12p(β𝐒)p+(i𝐒𝐀k)p

And assume its positive definite symmetric and invertable then do complete the squares

=12(pi(1β𝐀k))(β𝐒)(pi(1β𝐀k))121β(𝐀k)𝐒(𝐀k)

Then substitute it back in to get

=1τNVdqeβU(q)iδ(Qifi(q))dk1dkNeik𝐑Pdpe12(pi(1β𝐀k))(β𝐒)(pi(1β𝐀k))121β(𝐀k)𝐒(𝐀k)

stuff

=1τNVdqeβU(q)iδ(Qifi(q))dk1dkNeik𝐑Pe121β(𝐀k)𝐒(𝐀k)dpe12(pi(1β𝐀k))(β𝐒)(pi(1β𝐀k))

for an arbitrary multidimensional gaussian and symmetric positive definite matrix A.

dxe(xa)𝐌(xa)=πndet𝐌

You can show it works even iff the offset a is an complex vector

=1τNVdqeβU(q)iδ(Qifi(q))dk1dkNeik𝐑Pe121β(𝐀k)𝐒(𝐀k)1βnτndet𝐒

now the expression is independent of the fine grain momentum. Do complete the squares again.

ik𝐑P121β(𝐀k)𝐒(𝐀k)

rearrange a bit

=121βk(𝐀𝐒𝐀)k+i(𝐑P)k

complete the squares does

=121β(k+iβ(𝐀𝐒𝐀)1𝐑P)(𝐀𝐒𝐀)(k+iβ(𝐀𝐒𝐀)1𝐑P)βP𝐑T(𝐀𝐒𝐀)1𝐑P

and note this requires that 𝐀𝐒𝐀 is invertable symmetric positive definite. Substitute it back in.

=1τNVdqeβU(q)iδ(Qifi(q))dk1dkNe121β(k+iβ(𝐀𝐒𝐀)1𝐑P)(𝐀𝐒𝐀)(k+iβ(𝐀𝐒𝐀)1𝐑P)βP𝐑T(𝐀𝐒𝐀)1𝐑P1βnτndet𝐒
=1τNVdqeβU(q)iδ(Qifi(q))eβP𝐑T(𝐀𝐒𝐀)1𝐑Pdk1dkNe121β(k+iβ(𝐀𝐒𝐀)1𝐑P)(𝐀𝐒𝐀)(k+iβ(𝐀𝐒𝐀)1𝐑P)1βnτndet𝐒

Then do the same thing again with the gaussian

=1τNVdqeβU(q)iδ(Qifi(q))eβP𝐑T(𝐀𝐒𝐀)1𝐑PβNτNdet(𝐀𝐒𝐀)1βnτndet𝐒

This gives a solution for seperating the free energy

eβ(PR(Q)P+V(Q))=1τNVdqeβU(q)iδ(Qifi(q))eβP𝐑T(𝐀𝐒𝐀)1𝐑PβNτNdet(𝐀𝐒𝐀)1βnτndet𝐒

This gives a final expression of

exp(β(P𝐑(Q)P+V(Q)))=1τNVdqexp(βU(q)+ln(βNτNdet(𝐀𝐒𝐀)1βnτndet𝐒))exp(βP𝐑T(𝐀𝐒𝐀)1𝐑P)iδ(Qifi(q))